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Supplemental Methods
Study design

The study was conducted using 574 DLBCL biopsy samples (fresh frozen tissue sections). 556
cases were analyzed using DNA sequencing data from whole exome capture (WES; n=556, average
depth: 93X) or deep amplicon resequencing (HaloPlex; n=530, average depth: 896X) of 372 genes that
are recurrently mutated in DLBCL based on both published data and our preliminary sequencing analysis
(Fig. S1A). The majority of cases were analyzed by transcriptome sequencing (RNA-seq; n=562, average
mapped reads per case: 45,532,882). For 11 additional DLBCL we used available U133plus2.0 gene data®
to determine gene expression levels (see below). Genome-wide DNA copy number analysis was
performed on 560 DLBCL (CGH; n=560, Affymetrix SNP6.0 arrays). Biopsies were obtained from patients
at institutions in the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) consortium, at the
National Cancer Centre of Singapore, or from patients enrolled on the CALGB 50303 clinical trial® under
IRB approved protocols. We utilized genomic profiling data 40 DLBCL biopsies generated by The Cancer
Genome Atlas (TCGA)’ initiative downloaded from the NCI Genomic Data Commons (GDC). For the
majority of cases, we studied pre-treatment biopsies from cases of de novo DLBCL (n=554, 96.5%), with
the remainder (n=20, 3.5%) from relapsed or refractory DLBCL tumors. Gene expression-based cell-of-
origin classification of the tumors into ABC, GCB or Unclassified (Unclass) subgroups was achieved by
generating concordant Bayesian predictors based on gene expression values from RNA-seq (n=562),
Affymetrix U133plus2.0 arrays (n=11) or the Nanostring platform® (n=1). We deliberately enriched our
sample set for ABC and Unclassified tumors to test the hypothesis that genetic heterogeneity in these
cases is responsible for variable clinical responses to conventional and targeted therapy. The final data
set consisted of 295 ABC cases (51.4%), 164 GCB cases (28.6%), and 115 Unclassified cases (20.0%). The
clinical characteristics of these cases are presented in Table S9. Survival data was available on 240 cases
treated with chemoimmunotherapy (Rituximab plus CHOP or CHOP-like chemotherapy). Mutation and
copy number aberrations are shown in Tables S1-8. Primary sequencing data and copy number analysis
from these cases will be made available through the NIH dbGAP system (accession numbers phs001444,
phs001184 and phs000178) and the NCI Genomic Data Commons. Computer programs used will be
made available from the investigators upon request.

The study was designed by L.M.S. and R.S., data were gathered by L.M.S. and R.S., data were
analyzed by G.W., D.W.H,, C.J,, R.S. and L.M.S,, L.M.S. vouches for the data and the analysis, L.M.S wrote
the first draft of the paper with input from R.S., G.W., D.H.W., and C.J. and all authors reviewed the
manuscript, and L.M.S. decided to publish the paper with review by all authors. There are no relevant
legal agreements between the authors or their institutions.

Primary data processing

Exon-Seq and HaloPlex sequencing

DNA was extracted using the AllPrep kit following the manufactures instructions (QIAGEN). Sequencing
libraries for Exome-sequencing were prepared using the Agilent SureSelectXT Human All Exon V5 target
enrichment kit (Agilent). Paired-end 100 bp or 150 bp read sequencing was performed on a HiSeq 2500
or HiSeg3000 system using Illumina TruSeq V3 chemistry. Sequencing libraries for targeted amplicon
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resequencing were prepared using the HaloPlex Target Enrichment kit — custom design (Agilent).
Targeted genomic regions included the 5’ untranslated region (UTR), coding region, and 3’UTR of 372
genes. Additionally, 230 chromosomal regions were included. Details are listed in Table S11. Paired-end
125 bp sequencing was performed on a HiSeq 2500 system using lllumina TruSeq V4 chemistry.

Paired-end reads were mapped to the human genome (NCBI build 37) using BWA-MEM 0.7.12° with
default parameters. The alignment was further refined by the functions of local realignment, base
quality recalibration and indel realignment provided by GATK software 3.3 -0%. The variants were called
on the final alignment file (BAM) by VarSCan2 software!! using the following criteria: variant read count
>= 3 and variant read frequency >= 0.1 for Exon-Seq data; variant read count >= 15 and variant read
frequency >=0.02 for HaloPlex data. We define HaloPlex variants with read frequency between 0.02 to
0.1 as subclonal variants.

Overall, we detected 54,168 protein-altering mutations (missense, inframe insertion/deletion,
nonsense, frameshift, or splice donor/acceptor mutations), of which 45,497 (79.2%) were observed on
more than one sequencing platform. In addition, for some analyses, we additionally considered
subclonal mutations (mutant allele frequency < 10%) that were detected by the HaloPlex platform
(n=1,952). The gene expression subgroups did not differ substantially in the prevalence of mutations,
with an average of 99.6 protein-altering mutations per case.

Selection of candidate somatic mutations

To identify candidate somatic mutations from a large variant pool, we deployed a cascade of heuristic
filtering steps, divided into inclusion, exclusion and rescue steps. Inclusion criteria were: 1) any variant in
372 genes studied using HaloPlex deep amplicon sequencing; 2) missense variants supported by Exome-
Seq and RNA-Seq data; 3) truncating variants identified by Exome-Seq (nonsense, frameshift, splice
donor or acceptor mutations). Exclusion criteria were: 1) variants identified by Exome-seq or RNA-seq
analysis of in-house control DNA samples from normal B-cell subpopulations; 2) variants collected in
dbSNP (version 138); 3) variants with population frequency >0.0001 in the ExAC database (release
2015); 4) variants present in an in-house curated blacklist that was generated by inspection of variants
meeting the above criteria. The blacklisted variants were presumed to be artifacts generated either by
the high throughput sequencing platform itself or due to errors in alighment or annotation of the
sequencing reads by the analytical pipeline. These variants were identified by manual inspection and
typically were those that were unusually prevalent, identified exclusively by one sequencing platform,
and not recurrent among variants curated in-house from 57 next-generation sequencing studies of
lymphoma and leukemia. Rescue criteria included: 1) variants detected recurrently among published
somatic mutations from previous sequencing studies of lymphoma and leukemia; 2) variants at known
mutational hotspots in cancer.!>®® Evaluation of the sensitivity and specificity of these heuristic
procedures is described below in the section “Creation and testing a predictive model for somatic
mutations in DLBCL".

For certain lymphoma oncogenes, our analysis only included variants that target known functional
regions of the proteins. For CD79A and CD79B, we only included variants that target the intracellular
ITAM signaling regions, as such variants have been shown to promote BCR signaling.}* For NOTCH1 and
NOTCH2, we only included variants (mostly truncating) that target amino acids that are C-terminal to
the intracellular domain (ICN), since such mutations stabilize NOTCH proteins by inactivating PEST



domains.’ For NOTCH1, we additionally included 2 variants in the 3’UTR regions that have been shown
to cause alternative splicing and disruption of the PEST domain.®

RNA-Seq

RNA was extracted using the AllPrep kit (QIAGEN). Sequencing libraries for RNA-sequencing were
prepared using the TruSeq RNA Library Prep Kit V2 (lllumina). Paired-end 100 bp read sequencing was
performed on a HiSeq 2500 system using lllumina TruSeq V3 chemistry.

Paired-end reads were mapped to the human genome (NCBI build 37) using the gapped aligner STAR
2.4.1%, using the two-pass method and parameters recommended by NCI Genomic Data Commons
(GDC)8. The alighment file was used for calculating the raw digital gene expression values by HTseq-
count software 0.7.2%%, using the intersection-nonempty model, which were further analyzed to provide
digital gene expression values (see below). The alignment file was also used for variant calling by
VarScan2 with selection based on variant read count >= 3 and variant read frequency >=0.1.

Affymetrix SNP6.0 DNA copy nhumber arrays

DNA was extracted using the AllPrep kit (QIAGEN). Copy number was analyzed using Affymetrix SNP 6.0
arrays following manufacturer’s instructions (Affymetrix).

The imaging signals in the 569 CEL files derived from Affymetrix SNP 6.0 arrays were analyzed using the
Affymetrix Genotyping Console?® with default parameters to obtain probe-level signal values. These
were then analyzed using the DNAcopy Bioconductor tool?! to generate genomic segments for which the
probes had relatively uniform signal, and to calculate the mean signal values for the probes making up
each of those segments.

Analysis of RNA-seq data

Digital gene expression

Counts for digital gene expression (DGE) were normalized and transformed according to the following
equation:

500 = Cij
yij = max| 0,log, -
Trim mean o (Clj CNj)

where y;; is the DGE value of gene i on sample j used for analysis, ¢;jis the corresponding number of
raw counts, and Trim meanlgo(clj cN]-) is the average of the middle 90% of counts for genes in
sample j.

For 12/574 samples, no RNAseq data was available. However, eleven of these samples did have
expression data available from analysis of U133+ oligonucleotide arrays. Additionally, there were 381
samples which had matched RNAseq and U133+ array data available. This allowed us to impute pseudo-
DGE values for samples with missing RNAseq data, based on their U133+ measured expression. Given
the larger proportion of the data which had digital gene expression values exactly equal to 0, we found
that simple linear regression performed poorly. Instead, a system which preserved the relative rank of
expression for a given new sample between U133+ and DGE was used. For a given gene, let u; ... uy be



the U133+ expression values for the matched samples ordered from least to greatest, and similarly let
d; ...dy be the DGE values for the matched sample for that gene. If X is the U133+ expression for that
gene in a sample without DGE available, we substituted the imputed value y specified as follows:

d —d
if (x < up) y = max( 0,d; — (uy —x) (M)
Un/a — U
d —d
if(uk <XSuk+1) y:dk-|-(x—uk) (M)
Ug+1 — Uk
dy —d
if(uN<x) y:dk+(x—uN)<N—3N/4>
UN — U3N/4

Identification of cell of origin subtypes

We developed a DGE-based predictor of cell-of-origin subtype (COS) by mimicking the oligonucleotide
cell of origin subtype previously developed %2 for the 381 samples for which we had matched U133+ and
DGE available. The DGE model was a weighted average of the DGE values for 195 genes which were
predictive of COS on the U133+ data and were highly correlated between the two data sets. The
weights for these genes were given by the equation:

Z
J1+2Z2(p72-1)

where Z is the average expression difference between ABC and GCB on the U133+ data, divided by the
pooled within group standard deviation, and p is the Pearson correlation between the U133+ expression
and the DGE expression. The weighted DGE averages were then linearly normalized, so that their mean
and standard deviation matched that of the U133+ predictor scores. On the set of matched samples,
the resulting scores were in very strong agreement with what was reported according to the U133+ gold
standard (Fig. S6), and so we felt confident using the predictor score along with the U133+ cut-points
previously defined? to define cell of origin subtypes for all samples.

weight =

Gene expression signature analysis

For each signature in a database of gene expression signatures®* (https://lymphochip.nih.gov/signaturedb/),
the DGE signal values of the signature genes were averaged to provide a signature average value for
each sample. For the purpose of comparison between signatures, the values representing each

signature were linearly normalized so that their median and interquartile range matched that of a
standard normal distribution. In order to include samples for which the DGE was imputed based on
U133+2.0 array data (see above), we restricted ourselves to those genes for which both RNAseg-based
and array-based imputed digital gene expression were available. Overall, this represented 98% of the
signature genes. Significance P-values for the differences in signature averages between DLBCL genetic
subtypes were derived from Student t-tests.

Gene fusion analysis

Candidate gene-gene fusions were detected by using the alignment file (BAM) derived from RNA-Seq
data as input to the FusionCatcher algorithm.?> In addition, we developed an in-house script to detect



gene-gene fusions involving the BCL6 gene. In short, the in-house script searched for anomalous reads
that aligned to the BCL6 locus but had either been soft-clipped by BWA-MEM (indicating a region of
non-alignment) or had a paired-end read that did not map to the BCL6 locus. Soft clipping is a feature of
BWA-MEM that allows for the mapping of reads that have sequencing artifacts near their ends.
However, this feature also prevents the discovery of reads that represent fusion transcripts between
two genomic loci. Soft clipped reads are flagged by BWA-MEM, allowing us to obtain the full-length
sequences of these reads along with their paired-end counterparts. BLAT?® was used to align these
sequences against human genome build NCBI build 37. Any pair of reads that mapped both to BCL6 and
to another chromosomal location was declared as evidence of a BCL6 gene-gene fusion. For analysis, we
used BCL6 gene-gene fusions detected either by FusionCatcher or by our in-house method. All told, we
detected 112 BCL6 fusions. Fusion partners include IgH (69.6%), IgK (0.89%), IgL (6.25%), non-
immunoglobulin genes (23.2%).

To develop a BCL2 translocation genetic feature, we utilized evidence from FusionCatcher data,
BCL2 mutations, and BCL2 fluorescence in situ hybridization (FISH) breakapart probe studies. BCL2 FISH
data was available from 196 cases, of which 26 (13%) were translocated. BCL2 FISH-positive
(translocated) cases were most common in GCB DLBCL (29.7% of cases), less common in Unclassified
(10.8%), and absent in ABC (0%), as expected?’. FusionCatcher detected BCL2 fusions involving the IgH
locus in 19 cases. Among 6 such cases for which we had BCL2 FISH data, 5 were FISH-positive and 1 was
FISH-negative, suggesting that a BCL2-IGH fusion from FusionCatcher can function as a surrogate for a
BCL2 translocation. In addition, we identified BCL2 mutations in 56 cases, which were more common in
GCB DLBCL (21.3%), than in Unclassified (6.1% of cases), or ABC (8.9% of cases). Among the 15 BCL2
mutant GCB cases for which we had BCL2 FISH data, all 15 were FISH-positive, demonstrating that BCL2
mutation in GCB DLBCL is a useful surrogate for BCL2 translocation. For ABC and Unclassified, we only
had one BCL2 mutant case each that had BCL2 FISH data, which was insufficient to ascertain whether
BCL2 mutations are associated with BCL2 translocations in those subgroups. Given the above, we
defined a composite BCL2 translocation genetic feature that included cases that were BCL2 FISH-
positive, had a BCL2-IGH fusion from FusionCatcher, or were GCB with a BCL2 mutation.

Analysis of DNA copy number alterations

Among CGH samples from 569 donors, 9 had segmentation results that were too noisy to be usable and
were excluded from analysis. Additionally, thirteen samples appeared to be strongly over-segmented
but appeared to still contain usable signal. For these, the following statistic was used to estimate the
extent to which a division between two segments could be explained by noise:

M, — M,)?
Difference Statistic = %
nony

where M; and M, are the means of the adjacent segments, and n; and n, are the number of probes in
adjacent segments. Starting from the breakpoint with the smallest Difference Statistic, adjacent
segments were merged until no segment had a Difference Statistic less than 30.



We observed that there appeared to be great variability from sample to sample in terms of the
association between signal value and copy number. One possible explanation for this are differences
between samples in tumor content i.e. the ratio of malignant tumor cells to normal infiltrating cells in
the biopsy. If probe i on sample j is at a location with copy number ¢ij and if the proportion of the
sample that is tumor (as opposed to normal infiltrating cells) is 7;, then assuming that the sample has a
normal copy number of 2 at that location, the signal value for that probe should theoretically be:

GiiTi +2(1 — 7
0y = g, (207D

) ) +6j+€ij

where §; represents a sample normalization adjustment, and &;; represents random noise.

Over a long segment containing many probes with the same copy number, the noise should be heavily
reduced according to the law of large numbers, and so the segment mean should depend entirely on the
tumor content, the normalization factor, and a discrete copy number. By plotting the segment mean
versus the number of probes in a segment (Fig. S7, henceforth termed an MvsN plot), we observe tall
peaks that represent different integer copy numbers.

From this, the association between copy number and segment mean for a particular sample can be
deduced. Interestingly, a plot of the relationship between the average signal values of segments with
single copy gains on a given sample versus the average signal values of segments with single copy losses
on that sample indicated that our theoretical equation for the association between copy number and
value did not match the data well. However, simply changing the base of the logarithm from 2 to 3
made for an excellent fit (Fig. S8). Average signal values for long segments representing copy numbers
of 0 and 4 also seemed well-matched to this formulation. We therefore used instead the following
equation for the theoretical mean value associated with a given copy number:

ct+2(1 - T)) +6

M(c,t,9) =log3( >

For each sample, we applied the method of least squares to estimate the values of T and ¢ that provided
the best match between the observed segment means and their purported copy numbers based on the
MvsN plot of that sample:

(t,8) = Argmin (Z n;(m; — M(c;, 7, 6))2)

where the sum is over all segments for which the copy number could be identified from the MvsN plot,
n; is the number of probes in a segment, and ¢; is the purported copy number. Based on these values,
we calculated an estimated copy number for each segment (including those that appeared ambiguous in
the MvsN plot), which were then rounded to the nearest integer value to give a copy number estimate
for every segment. Those with a copy number of 0 were designated as homozygous losses. Those with
copy number of 1 were designated as heterozygous losses. Those with copy number equal to 2 were
designated wild type. Those with copy number equal to 3 were designated single copy gain. Finally,
those with copy numbers of 4 and above were designated amplifications.

We recognized that there exist regions that frequently have copy numbers unequal to wild type in
normal tissue in the human population, and that there is also the possibility that there might be regions
in which the Affymetrix platform gives erroneous results. We therefore developed a blacklist of
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genomic regions which if abnormal are unlikely to represent somatic copy number change. This list
included 1,309 regions identified in the literature?® as natural CNVs, plus an additional 254 short regions
that were frequently found to exist as abnormal copy numbers in our data but which didn’t appear to be
associated with change in gene expression or exon probe density. The total area covered by these
regions was 111 Mb. For the TCGA samples, which also had matched normal SNP 6.0 data, we also
considered any abnormal segment discovered on the normal sample to be part of the blacklist for the
corresponding tumor sample.

Segments for which the overlap with one of the blacklisted regions was greater than 25% of the
segment length and also greater than 25% of the region length were flagged for exclusion. 30% of
segments were flagged in this manner. Generally, the overlap of flagged regions was much higher than
the 25% mutual overlap required, with 58% of the flagged segments having a mutual overlap greater
than 90%. Each flagged segment was eliminated by setting its copy number designation equal to the
copy number of the longer of the two segments that border it.

Once the copy number designations of all segments had been determined, adjacent segments of equal
copy number were merged to form longer, combined segments. Segments of length less than 30Mb
were reported as focal copy number changes. A chromosomal arm was declared to be amplified if
segments covering more than 70% of the area were designated as amplifications. An arm was declared
to have a single copy gain if it was not amplified but more than 70% of its length was covered by
segments designated as either single copy gains or amplifications. A chromosomal arm was declared to
be homozygously deleted if segments covering more than 70% of the area were designated as
homozygous deletions. An arm was declared to have a heterozygous loss if it was not homozygously
deleted but more than 70% of its length was covered by segments designated as either heterozygous
losses or homozygous deletions. A chromosome was declared to be amplified if both arms were
declared to be amplified. A chromosome was declared to be homozygously deleted if both arms were
declared to be homozygously deleted. A chromosome was declared to be trisomy if either both arms
indicated a single copy gain, or one arm was declared to have a single copy gain and the other was
declared amplified. A chromosome was declared to have a heterozygous loss if either both arms
indicated a heterozygous loss, or one arm was declared to have a heterozygous loss and the other was
declared homozygously deleted.

Creation and testing a predictive model for somatic mutations in DLBCL

The majority of cases lacked matched normal DNA, requiring us to develop and test a tumor-only
mutation calling pipeline. In brief, we analyzed WES data from TCGA DLBCL tumor and matched normal
samples using the MuTect2 algorithm?®, thereby generating a “gold standard” set of somatic mutations.
On a training set of 23 TCGA cases, we developed a Random Forest-based predictor of the MuTect2-
derived somatic mutations, using a set of 25 annotation attributes of the MuTect2 somatic mutations as
input for the Random Forest algorithm. We assessed this model on an independent validation set of 23
TCGA cases, and then applied it to variants that were generated by our tumor-only mutation calling
pipeline, as detailed below.

Random Forest model for detecting somatic mutations in tumor without matched normal

Due to the complexity of cancer genome rearrangement as well as sample impurity and sub-clonal
mutations, regular SNV callers such as GATK’s HaplotypeCaller, which rely on a ploidy assumption, do
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not work well on whole exome cancer samples. MuTect2?, which was specifically developed for such a
situation, albeit with paired-normal samples, is regarded as one of the most reliable cancer SNV
callers®®. However, cancer genome studies without paired normal samples cannot take advantage of
tools such as MuTect2. In this supplement, we hypothesize that a machine-learning model based on
variant toxicity scores can be trained using MuTect2 variants called from tumor-normal samples and
applied to predict somatic mutations variants from a tumor-only pipeline.

Many available tools attempt to predict the pathogenicity of missense variants; most of these tools
consider evolutionary factors such as the degree of conservation of the affected residue3!. The premise
of the proposed model is that a feature space consisting of toxicity scores provided by multiple models
(CADD, MutationTaster, MutationAssessor, GERP++, Polyphen2, SiPhy, SIFT, LRT, PhyloP, VEST3, and
FATHMM) along with a few intrinsic sequencing features can be used to classify a variant as somatic.

A random forest is an instantiation of an ensemble learning method in which a multitude of decision
trees are constructed by sampling the feature space32. The training algorithm employs a form of
bootstrap aggregation, or ‘bagging,” which has been shown to improve classification performance over
that of single classifiers operating on the full feature space. The model was trained using the R package
‘randomForest’®3, which is an R implementation of the original work of Breiman3*. The number of trees
was set to 500; all other hyperparameters were set to their default values.

To develop and test the RF model, we downloaded 46 cancer-normal pairs of DLBCL exon-seq data from
TCGA’, including 40 DLBCL datasets utilized in previous analysis. The fastg-format sequencing files were
first aligned to the human genome Hg19 via BWA in accordance with TCGA guidelines. MuTect2 was
used to make both somatic and germline SNV calls. Those calls that passed statistical filters and fell into
coding regions were used to train and test the classifier. The RF model was initially trained on 23 of the
46 samples consisting of a total of 2609 unique calls. The feature space comprises intrinsic data such as
mutation rate, read depth, and duplication status as well as scores from 16 toxicity assessors. Table S14
provides a summary of the data from the 46 TCGA DLBCL samples.

Preprocessing

The toxicity scores that comprise most of the feature space are missing in many calls for a variety of
reasons. Although simple linear regression can be used to impute single missing variables, missing data
that occur in more than one variable (feature) present a challenge to classification algorithms including
the random forest. Furthermore, the toxicity scores are a heterogeneous mix of numerical and
categorical data. Multiple imputation is the method of choice for complex incomplete data problems.
We used a method called Multivariate Imputation by Chained Equations (MICE)*, an algorithm that has
become popular in econometrics. We adapted MICE to the current problem of imputing the feature
space of a somatic mutation caller.

Machine learning methodology

The goal of training a machine-learning model on MuTect2 calls from paired normal DLBCL samples is to
mimic the MuTect2 assessment in the absence of paired normal samples. The model is trained with an
aggregation of toxicity scores derived from ANNOVAR annotation (Table $15), some of which are
aggregations of other scores, as well as intrinsic features such as mutation allele frequency, depth of
reference reads, and duplication status of that variant across the training samples.
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Random forests are manifestations of a popular ensemble learning method for classification tasks that
operates by constructing a multitude of decision trees by sampling combinations of the feature space,
thereby adding power to the prediction through fusion of the consensus prediction of the ensemble. In
addition to the bagging of the feature space which is intrinsic to the random forest, we have employed a
sample bagging scheme to boost prediction accuracy. In this scheme, 10 random forests are trained
and their results are averaged. Since far more somatic calls were available for training than germline,
we performed 10-fold subsampling of the somatic calls to provide balanced somatic/germline training
sets to each member of the sample-bagging ensemble. Note that in so doing we effectively sample a
grid of both samples and features since the random forest is itself an ensemble.

Cross-validation and holdout testing on DLBCL data

The random forest model was trained and cross-validated on 23 of the 46 available TCGA DLBCL
samples. The cross-validation was a 23-fold procedure whereby for each fold, the variant calls from 22
of the 23 samples were used for training and the variants from the remaining sample were used for
testing. The cross-validation performance is shown in Table S16. In the performance measures,
somatic calls are regarded as predicted positives and germline calls are regarded as predicted negatives.
The MuTect2 calls on the paired TCGA data are regarded as ground truth for this evaluation.

The receiver operating curve (ROC) for the 23-fold cross validation is depicted in Figure S9 along with the
performance of the individual toxicity callers (shown as dashed curves) that constitute the feature space
of the model.

Since the callers will typically perform well in one performance measure but not others, the ROC curves
formed by the toxicity callers appears to be clearly inferior to that of the random forest, demonstrating
the efficacy of the aggregation of toxicity scores being performed by the random forest model. In the
current application of identifying somatic variants in the absence of paired normal samples, it is of
paramount concern that positive (somatic) predictions be made with a high degree of confidence. For
this reason, we looked at the measure of positive predictive value (PPV), which measures the likelihood
that positive predictions are true positives, i.e., PPV =TP / (TP + FP).

Holdout testing was performed on the remaining 23 TCGA DLBCL samples not used in training or cross-
validation, as summarized in Table S17. As the samples used for training and testing were selected
randomly, the holdout set had a lower proportion of germline variants than the training set, leading to
the performance discrepancies shown. The ROC and sensitivity-PPV curves for the holdout test are
presented in Figure S10, which also shows that the ROC curves of the toxicity assessors are significantly
worse than that of the aggregated model, in a manner consistent with the cross-validation result.

Somatic prediction on variants in the present study

The random forest model was applied to the filtered list of DLBCL variants featured in the present study.
Although we do not have matched normal samples in this study, we can evaluate the rate of predicted
somatic variants. Table S18 provides the results of this experiment on all variants (A) as well as those
variants from TCGA donor samples (B). The predicted rate varies slightly between the subtypes of
DLBCL. Since there was no significant difference in this estimated somatic mutation rate on the samples
from TCGA versus those from other sources (p=0.36), we expect that the agreement between this model
and MuTect2 on our entire data set would be similar to what we observed on the validation set. We

12



therefore estimate that if we had normal samples available and were able to apply MuTect2 to our
samples, approximately 91.8% (95% Cl 91.1 - 92.4) would be somatic. Given this high rate we decided
for simplicity to assume that all the filtered mutations were somatic.

Prediction of AID-dependent somatic hypermutation target genes

The variant collection for hypermutation analysis was based on the output of BWA alignment and
VarScan calls described in Exon-Seq analysis section. For hypermutation analysis, the variant selection,
including silent coding region variants, variants in intron/UTR regions as well as typical somatic
mutations, was much broader than that of somatic mutation analysis. To mitigate bioinformatic and
experimental noise, each variant needed to fulfill the following criteria: 1) 25 mutation reads which
constitute 220% of total reads; 2) <0.0001 variant frequency in the normal population as judged using
the EXAC exome sequencing database, unless variant is present as a somatic mutation in the COSMIC
database of cancer mutations; 3) variant not observed in our exome sequencing data of normal B cell
control samples.

To create a predictor of somatic hypermutation, we collected mutations from our DLBCL samples in 44
genes previously described as targets of AID-dependent hypermutation®®. This previous study
developed a hypermutation predictor starting with 12 genes that are canonical targets of AID-
dependent hypermutation in DLBCL. These investigators predicted 28 additional AID targets in DLBCL
based on their relative proportions of: 1) transition versus transversion mutations; 2) mutations within
the AID hotspot motif (WRCY|RGYW); 3) mutations within 2 kbp of the transcription start site; 4) A/T
variants; 5) C/G variants; 6) silent versus disruptive variants®. We extended this mutation feature space
based on concepts developed to comprehensively classify somatic mutations in cancer’28, Specifically,
we considered the sequence context of a mutation, defined as a 3-base window beginning 1 bp 5’ of the
mutation and ending 1 bp 3’ of the mutation, and determined these proportion of mutations in a gene
assigned to each of these triplet bins. We collected the above proportional and frequency feature
variables for all genes aggregated from all the DLBCL datasets in this study. We trained hypermutation
models based on the characteristics of the 44 published AID target genes within this feature space, and
used the models to predict additional genes as AID targets in our DLBCL samples.

Two supervised classification algorithms were used to train models and compare the respective
prediction results: a support vector machine (SVM) with a radial basis function kernel*®, and a random
forest. Both models were trained on the same set of 44 candidate AID-dependent hypermutation genes
described above. A similar number of genes were randomly sampled as pseudo-negatives for training
the model. The rarity of somatic hypermutation genes justifies the random sampling strategy;
fortunately, none of the sampled negatives co-appeared in the main cluster of hypermutations in
dimensionality reduction experiments (as explained in the caption of Fig. S11).

The cross-validation performance of the models was tested in leave-one-out experiments. These
experiments revealed that to achieve strong performance, the training set must be filtered to include
only genes with a sufficient number of total mutations across all samples; we chose 40 total mutations
as this minimum threshold through empirical testing. While the 40-mutation threshold filtered out only
twelve positives from training, it greatly improved positive predictive value while preserving acceptable
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sensitivity. Table S19 provides the cross-validation results for both models, which are strong in
specificity and positive predictive value.

In Figure S11, standard dimensionality-reduction plots (from the R package “dimRed”) are compared
between the 44 previously reported hypermutation genes and the hypermutation genes predicted by
the SVM model. These plots revealed that that the spatial pattern of the hypermutation genes
predicted by our methods overlaps with the spatial pattern of the previously reported hypermutation
genes. Although the cross-validation results suggest slightly stronger performance of the random
forest, we have adopted a cautious approach of requiring confirmation from both model predictions in
designating a newly identified hypermutation gene. Table S20 lists the genes for which the posterior
probability score of both the SVM and random forest is greater than 0.5. Complete results are available
in Table S12.
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Multi-platform analysis
Genomic feature definition

We adopted a gene-centric analysis strategy in which we defined exonic or splice junction mutations,
copy number alterations (amplification (Amp); single copy gain (Gain); heterozygous loss (HL);
homozygous deletion (HD)) and digital gene expression values for each protein-coding gene.
Chromosomal rearrangements were predicted based on evidence of fusion transcripts from RNA-seq
data (Fusion), supplemented with fluorescence in situ hybridization (FISH) data in the case of BCL2 and
BCL6 (see Methods).

We use the word “feature” to indicate a set of samples which share a specified set of abnormalities on a
specified gene. For each gene, we considered features in each of the following categories:

1) Mutation: Includes all samples that have a verified mutation in that gene with more than 10%
estimated allele frequency.

2) Subclonal Mutation: Includes all samples that have a verified mutation in that gene with more
than 2% allele frequency. This is a superset of the Mutation feature.

3) Truncation: Includes all samples that have a verified truncation mutation in that gene with more
than 10% estimated allele frequency. This is a subset of the Mutation feature.

4) Subclonal Truncation: Includes all samples that have a verified truncation mutation in that gene
with more than 2% allele frequency. This is a superset of the Truncation feature and a subset of
the Subclonal Mutation feature.

5) Focal Amplifications: Samples which, according to the copy number analysis, have an
Amplification segment of length less than 30Mb covering the specified gene.

6) Focal Homozygous Deletions: Samples which, according to the copy number analysis, have a
Homozygous Deletion segment of length less than 30Mb covering the specified gene.

We also generated the following feature to be included in combination with other features (see below),
but we did not include it in any analyses on its own.

7) Focal Losses: Samples which, according to the copy number analysis, have a Heterozygous Loss
or Homozygous Deletion segment of length less than 30Mb covering the specified gene.

Those sample/feature combinations for which we lacked the data to make an assessment (e.g., copy
number features on samples for which there was not a good SNP6.0 array available) were indicated as
unavailable.

Additionally, we considered twelve features made of a combination of a mutational feature (Features 1-
4) with a copy number feature (Features 5-7). For example, for each gene we considered
“Truncation/Amplification” features which included all samples that had either a truncation or
amplification for that gene. If for a particular sample, one or more of the features used to make the
combination was unavailable, then the combination was indicated as unavailable, unless the other
feature used to make the combination was positive. In that case, the combination was indicated as
positive.
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Finally, we included five specialized features related to our model subtyping:

a) MYD88"%P mutations

b) Mutations of MYD88 that were not L265P
c) BCL6 fusions

d) BCL2 translocations

e) CD274 (PD-L1) or PDCD1LG2 (PD-L2) fusions

To eliminate noise and concentrate on those features frequent enough to be of biological interest, we
excluded all features that were found in fewer than four samples. For the combination features, we
required that there be at least as many samples that were included in the feature due to their mutation
as were included due to their copy number, and that at least four samples were included due to their
copy number.

The GenClass iterative genetic subtype algorithm

In what follows, we will use the term “classification” to denote a mapping between a set of samples and
one of five groups (N1, MCD, BN2, EZB and Other). Our goal was to start with an initial “seed”
classification and evolve it in such a way as to maximize its association with our set of features while still
maintaining the biology suggested by the initial classification. This is done through an iterative
algorithm, termed “GenClass”, that slowly adjusts the sample classification so as to maximize the
strength of association between the classes and the set of features. The model development, and core
group selection was done blinded to the clinical data which was unblinded only after a locked down
model had been developed. Briefly, the algorithm followed the outline below:

1) Begin with an initial seed classification of samples.

2) Identify the list of features that are most highly associated with the current classification.

3) Based on these features, calculate an association statistic for the current classification and for all
alternative classifications that differ from it by a change of at most one sample, and identify the
classification with the highest prediction score.

4a) If the best classification identified in step 3 is not the current classification, return to step 2 using
this best alternative classification in place of the current classification.

4b) If the best classification identified in step 3 is the current one, halt the iteration and report it as
the final result.

These steps are spelled out in greater detail below:
Step 1) Initial sample classification
We started with the following initial seed classification:

1) Those samples with a NOTCH1 mutation were initially classified as N1.

2) Those samples with both a MYD88%%*" mutation and a CD79B mutation were initially classified
as MCD.

3) Those samples with either a NOTCH2 mutation or a BCL6 fusion were initially classified as BN2.

4) Those samples which had either a EZH2 mutation (clonal or subclonal) or a BCL2 translocation
were initially classified as EZB.

5) All other samples were initially classified as Other.
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Step 2) Identification of features associated with current classification

Given a set of samples S and a feature F, we define the significance of the association between S and F
by the chi-squared statistic including a Yates continuity correction:

(X IsIp 21 = 1)1 = Ip) = (1 = I)Ip X Is(1 — Ip)| — N/2)?
DI XX —I) X1 —I5)
where N is the total number of samples, I, and I are the indicators of the sample being in set S or

having feature F, and the summation takes place over the set of samples for which feature F was
available.

XS, F) =

The association between a classification and a specific feature was equal to the maximum of this statistic
over the first four subsets (N1, MCD, BN2, EZB):

V(C,F) = (x(s, F))

max
SE{N1,MCD,BN2,EZB}
according to classification C

Based on these statistics, the list of features associated with the current classification, C.yprent, Were
defined as all those features F that met the following criteria:

1) According to the current classification, the prevalence of F was greater than 10% in at least one
the four main subtypes (N1, MCD, BN2, EZB).

2) There are no other features F' that are associated with the same gene as F for which
V(Ceurrents F') > V(Ceyrrent, F)- If two or more features for the same gene are tied for highest V
score, then one of the features is chosen at random for inclusion and the remaining are
excluded.

3) If F is a copy number or combination feature, there is no other copy number or combination
feature F' such that V(Ceyrrents F') > V (Ceyrrent> F) and the gene associated with F' is within
15Mb of the gene associated with F. If two or more such features within 15Mb are tied for
highest V score, one of the features is chosen at random for inclusion and the remaining are
excluded.

4) V(Ceyrrent» F) > 10.85 (the equivalent of significance p<0.001 according to a chi-squared test)

Step 3) Calculate association statistic for current classification and alternative classifications

Let 2(Ceurrent) be the set of classifications that differ from the current classification by the change of at
most one class label. We identify the best classification according to the formula,

Cpest = argmax (Z v(c, F))
Cen (Ccurrent)

where the sum is taken over all features identified in step 2 under the current classification. Note that
in this step, the set of features remains fixed and does not change for different alternative features in
D(Ceyrrent)- If multiple classifications are tied for best, one is chosen at random.

17



Step 4) Halt procedure or continue to the next jteration

If Chest # Courrent then the reclassification of that sample made a step towards the improvement of the
classification. We then use Gy as our current classification and return to step 2, identify a new set of
features associated with this classification and look to see which next change of class label most
improves the association with the set of features. If Cyest = Ceyrrent, then there is no single change in
class label that can improve the association, and so we consider the current classification to be optimal
and report it as the final answer. Since the set of features over which the optimization takes place
changes from step to step, it is theoretically possible that the iteration falls into a loop and could fail to
converge. To prevent this, we actually expanded the halting criteria to stop if the (¢ has ever been
used as Cyrrent iN @any of the previous iterations.

Application of the GenClass method to classify a single sample

As defined above, the GenClass algorithm was developed as an evolving classifier acting on a study set
of cases. However, to be clinically useful, it is necessary to develop a method that can take a fixed,
previously developed classification and apply it to a novel sample. We can do this by first identifying a
set of features based on the current classification as in step 2 of the modeling procedure, and then, in a
similar manner to steps 3-4 above, calculate the sum of V-scores for the 5 classifications consisting of
the current classification plus the addition of the novel sample classified in the 5 possible ways (BN2,
MCD, EZB, N1, Other). We then choose the classification for the novel sample which results in the
greatest sum of V scores.

We recognize that in a clinical setting it is unreasonable to expect a molecular characterization of
patient samples as complete as what was available for the samples in our study. We expect it be
feasible to obtain information regarding BCL6 fusions and BCL2 translocations as well as mutation data
from a limited panel of genes. We also consider it likely that we could also identify cases with
homozygous deletions or high-level amplifications of a small set of selected genes, but that it is unlikely
that information about heterozygous losses would be available.

As a proof of principle, we selected 58 features based on BCL6 fusions and BCL2 translocations,
mutational information on 52 selected genes and either amplification or homozygous deletion
information on 12 selected genes, and tested models based on these features using 10-fold cross
validation (Table S13). This model matched our original classification in 97.5% of the samples. Ina
second pilot model in which we selected only BCL6 fusions and BCL2 translocations and mutation
information from 50 selected genes, we obtained a 10-fold cross validated agreement in 94.8% of the
samples.

These results are preliminary, do not take into account the technical variability of any platform that
might be used in a clinical setting, and will need to be independently validated in future studies, but
they do strongly suggest that it should be possible to develop a clinical test for this distinction.

Permutation testing

We wished to demonstrate that the groups we identified were more strongly associated with the
feature space of our data than would be expected by chance. To do this, we used the criteria described
in step 2 of the class prediction algorithm to associate a classification with a set of genes, with the
exception that we chose a chi-squared cut-off of 6.635 (equivalent to p<0.01) rather than 10.85. We
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then counted the number of associated genes under the original classification and compared this value
to the number of associated genes when the class labels were randomly permuted. This was done for
the original seed classification defined in step 1 of the prediction algorithm, and for the final genetic
subtype classification produced by the prediction algorithm. All features from genes used to define the
original seed groups were excluded from the list of associated genes. For the original seed classification,
6/1000 permutations had a larger number of associated genes than the number of genes associated
with the unpermuted class labels, so we reported a p-value for significance of p=0.006. For the final
genetic subtypes, the number of genes found to be associated with the unpermuted class labels was
substantially higher than for any of the permuted results, and so we conservatively reported the p-
values as p<0.001. A similar analysis for the ABC/GCB subgroup distinction (Fig. 1A, Fig. S1B) yielded a
permutation probability of p<0.001.

Random forest model for genetic subtype prediction

In addition to the GenClass iterative method for DLBCL genetic subtype prediction described above, we
created an independent random forest method to define genetic subtypes. The genetic feature space
that we used for the random forest prediction was identical that used by the GenClass method. To
create a 5-category random forest, we used the same 4 “seed” subsets of DLBCL samples as were used
as the starting point for the GenClass method. In addition, the random forest method requires a neutral
fifth subset of DLBCL, which we term “5CAT”, that was constituted using an algorithm that finds
‘negatives’ in the data, as follows. Initially, 80 DLBCL samples (more than needed for the final model)
were randomly selected for membership in 5CAT, excluding samples in the 4 seed subsets. A random
forest model was trained on the seed subsets plus 5CAT, and leave-one-out cross-validated prediction
was applied to the 5CAT samples only. Any of the initial 5CAT members that were predicted to belong
to one of the other subsets was removed from the 5CAT set. The random forest was retrained again
and cross-validation performed to remove additional samples from 5CAT that were predicted to belong
to one of the 4 seed subsets. This process was repeated until the 5CAT set was stable at 39 samples.
This final 5CAT subset plus the 4 seed subsets were used to train a final 5-category random forest
model, which was then used to predict membership of each remaining sample in one of the 4 subsets,
or to declare the sample unassigned.

Figure S12 depicts Venn diagrams comparing genomic subtype membership predicted by the GenClass
predictor and the random forest predictor. As mentioned above, this result was based on using the
same genetic feature space for the two methods, namely the set of genetic features that was
statistically differential between each starting seed subset and all other cases (see Genclass methods for
details). When the random forest method used independently selected features selected from the
entire genetic feature space, the random forest model predictions overlapped with those of the
GenClass algorithm to a similar extent (data not shown).

Additional statistical analysis

Unless otherwise specified, all p-values relating discrete variables to each other are calculated using a
Fisher exact test. All p-values for survival are calculated from a Cox proportional hazard score test. IPI
score was treated as a categorical variable taking on three values: Low for IPI=(0,1), Intermediate for IPI
=(2,3), High for IPI =(4,5). Gene set enrichment p-values are calculated as previously described?. All p-
values reported are two-sided.
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Figure S1

DLBCL (n=574)

(n=164)

RNA-seq (n=562)

Exome-seq (n=556),

DNA Copy #

‘Amplicon-seq (néao)

(372 genes,
B ABC GCB logyo
Gene Alteration % % pval ABC DLBCL (n=295) GCB DLBCL (n=164)
TS CDKN2A Mut HD 49.7 8.3 -19.8 L In | LT | |
sHm PIM1 40 14 -8.6 [ o Wl [} () 1 o onm 1] n
s HLA-B Mut HL HD 38.4 147 -6.9 [ wow o ! Wil T BTN T
onc SPIB Gain Amp 338 1.9 -175 | 1
s ETV6 Mut HL HD 289 64 -83 v ' ' e
onc MYD88-265P  Mut 288 1.2 -155 " Wil
onc CD79B Mut Am 26.8 1.9 -125 - !
s HLA-A ut HL HD 26.6 9 -52 1 1 il 1 0 11 ]
s |RF2BP2 ut HL HD 254 6.4 -6.6 ! o ! " 1 L] |
s PRDM1 ut HL HD 253 25 -10.6 [t w anafw jwelow] v ew e ! LI !
TS CD58 Trunc HL HD 23.8 121 2.6 [l 1w e wiopf o | Iy LAY T | L] 1 b nn In
s HLA-C Mut HL HD 23.2 10.3 -3.1 [l tim A LT T TR LR I IO il
s SETD1B Mut HL HD 22 7 -45 " o n 1100000010000 O ] 1 1 (L 1 1 1 |
sim OSBPL10 Mut 20.7 85 -3.2 P e w0 n 1 [ 1 0 100 1 n
s TOX Trunc HL HD 20.3 9.6 -25 I | b AN ! | ] | !
s TBL1XR1 ut 19 43 -54 [} om0 1 CTITIT Y 1 m ni (i 1 ]
TS B2 ut HL HD 179 77 -24 ! ! OO WO i e W A i i o ! LI ! Willw !
sim MPEGH1 ut 149 3.7 -3.9 10w 1 [ 1 1 ] 1100 L " CTTe I I I CITITI
s FOXC1 ut HL HD 13.7 1.9 48| v v 1 ] 1 LY A IO e (W} I 1
s HNRNPD ut HL HD 13.2 3.8 -29 ! ! | ! Ll ! | n ! !
onc |RF4 ut 129 3.7 -3.1 1 mernoan mo T ) 0000000 I I I Wl 1"
s LYN Trunc HL HD 128 3.2 -3.2|l I t LT n ' ' '
s KLHL14 Mut HL HD 12.7 45 24|l vivin g I 1 () LU T 1 I I llIIs] I 1 1
s |TPKB Trunc HL HD 124 32 -30 ! ! ! ! ! ! v " ! | !
s ZC3H12A ut HL HD 12.4 38 -2.7 | LN NN T | mioa IETII oo I 1 i I i I (| ]
TS ZNF292 ut HL HD 121 26 -35|1 1 ! ' LY ' L ! ! !
s PCNX: ut HL HD 1.4 13 -43 L ! ! !
SHM PIM2 ut 10.2 6 47 1 O e 1 [ noem o T 1 I
18 GRB2 Trunc HL HD 10 25 -2.4 1l ! Ll I ' 1 !
onc DAZAP1 Mut Amp 10 1.9 -30/[ «» vl 00 A | | | LTI LI
sum GRHP ut 95 1.2 -36 DT T 1 1 (O T T 1 1 1
s HIVEP1 ut HL HD 82 13 -27 ! ! ! ! LTI LI !
s UBE2 ut HL HD 7.9 .6 -33 L] ! L ' ! L] !
s BRCA ut HL HD 71 6 281 L ! ! LITILTIE ! | ! !
onc NFKBIZ Gt Amp 71 8 281 ' I N AR |
onc MALTI Amp 69 6 281 I T I il i I |
onc PIK3CA ut Amp 68 6 25| 11 Ry T A T I i
onc NOTCH1 ut 6.1 0 -33 n I I 1 1 T m mo "
s KLHL42 ut HL HD 6 0 -33 " ! ' Alliivw ! !
onc IL10RA ut 5.8 0 -33 11 11 1 [} Y I 1 1 [}
s TNFRSF14 ut HD 3.8 38.1 -20.2 [ ! [ | IIEN [ !
s CREBBP ut HL HD 134 30 4511 ! ! It ! mi NI A
s B2M ut HD 155 296 -3.2 g A TS ST T A T ey e I s
onc BCL2 Transloc 7 28 -19.8 | 111 [
s SOCS1 Mut HL HD 10.3 28 -5.4 A A1 A ) 0 o | DO ()
onc EZH2 Mut 1.7 22 -12.2 | Wl WA | |||||| LT T T om om0
sHm SGK1 Mut 27 21.3 -9.8 ] " I I 1 | L T 1t noam
onc |RF8 ut Am 6.9 212 -48 1 1 i 1 1 | 1 | I I I 1 LT e wnt mom wow (O me
s EBF1 ut HL HD 9 21 -32 1] i I il n n | | 1 1 non 0000 ) 0 I L A CM e e
s GNA13 ut HD 3.8 209 -7.7 " 1 | noa 1 NI i moujlne [ CL U U A ]
onc REL Am 1.7 20.4 -10.6 | l LT [ T Y AT T T
s P2RY8 Mut HL HD 6.9 20.3 -4.3 | il 1 I (I 1| T 010010000
1s ClITA Mut HLHD Fus 8.3 20.3 -3.3 4 | vl ! UL mi ! ! Ll O Wi | |
s KLHL6 ut HL HD 86 17.2 -21 LI 1 1 I ma ] ne 1 1 ] LI} L] 1 1 1 L CUMMEJACY NI e m m
onc STAT3 ut 47 134 -281 A 1 1 1 O i 01 0 00T
s DDX3X ut HL HD 1.4 121 -56 ' ! ' ma M1 Wil LI L]
onc STAT6 ut Amp 0 12 -89 1o nwim "
s PTEN ut HD 21 115 -41 ' ! | Ll ! L LI 011100 e
sHm BCL7A ut 35 11.1 -2.7 1 il IS 1 (] Ve wonm CHETACmET: T |
onc GNAI2 ut 1.7 11 -46 1 1 | | 0 O I
s PARP2 ut HL HD 1.8 9.6 -34 I ! ! ! !
TS SEL1L3 ut HD 11 96 -45 A ! ! vl " ! I noaa
s S1PR2 ut HD 1 95 -46 | 1 | n 00000 | 1 |
s HLA-DMB t 21 93 -28 1 I 1 [} 1 1 noon Eonnnm 1 I
s UGGT2 Mut HL HD 1.8 89 -31 L ' J Al
s POLG Mut HL HD 11 83 -37 ' | T ! !
onc MIR17HG i 17 83 -238 I I I I I W il
s NFKBIA Mut HD .7 76 -39 i L I W 1A LI
onc MAP2K1 ut .7 6.8 -34 " " AL N !
onc BRAF Mut 14 64 -241 L i I ! LU ! ! Ml !
s EIF2AK3 Mut HD .7 58 -27 L | LI ! | ! ! T
s ARHGEF1 Trunc HL HD 1 57 -23 L LIl L
Genetic Alteration: Ml Missense Mutation MTruncating Mutation M Inframe Mutation IFusionfuansIocation IAmpI‘rﬁcation Gain IHomozygousdeIetion Heterozygous deletionn
C 213 NOTCH2 R2400Xe 57 SPEN 9y NOTCH1 P2514fs @
£ .
3 8.0 ? hg
E . a5 o ee o © eOME VNN EMEee e e | M esse o o0 cewe o P §
IIII il BN T m ] | I 111 TTTTTTTTEOR T[] | 1
400 800 1200 1600 2000 24710 1000 2000 3000 36640 400 800 1200 1600 2000 2555
D 2431gH locus 5]BCLS6 locus
8 8
g & J
0 ) . 1 l [ o h 1 - - - -
H H W HI L) ) [ I N «
IgA2IgE  1gG4 1gG2 IgA1 IgG1  1gG3 IgD IgMIgJn IgD s

chri4: 1

105,650,000 1

105,700,000 1

105,750,000 1

105,800,000 1

105,850,000 1

105,900,000 1

chr 3:187,440,0001

187,450,000 1

187,460,000 1

Figure S1. A. Study design illustrating assignments of the cases to gene expression subgroups (left) and the number of cases that were
studied using each genomic platform (right). B. Genetic aberrations that distinguish ABC and GCB DLBCL. For each gene, the
constellation of genetic aberrations that best distinguish the ABC and GCB subgroups is shown, together a —log;, P-value from a
Fisher’s exact test for this distinction. Shown are aberrations in subtype distinction genes with >5% prevalence within the subtype and
P<0.01 for the distinction of the subtype from all other DLBCL. Putative assignment as an oncogene (Onc), tumor suppressor (TS) or
target of aberrant somatic hypermutation (SHM) is shown. C. Position of mutational alterations in the protein structures of NOTCH2,
SPEN, and NOTCHI (see Supplemental Methods for selection of candidate somatic mutations). Green: missense; Red: truncation
(nonsense, frameshift). D. Genomic position of mRNA fusions involving the immunoglobulin heavy chain (IgH) locus and the BCL6
locus.
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Figure S2
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Figure S2. A. Schematic of the GenClass iterative genetic classifier used to create the DLBCL genetic subtypes. The method starts
with a set of seed classes, four shown here, and an “Other” category. At each step of the iteration, all possible moves of a single
sample into or out of a seed class are considered, and the change in a Chi-square-based genetic distinctiveness metric is assessed.

This metric assesses all differences between the prevalence of genetic alterations in a class versus the prevalence among cases not in
that class, and aggregates these differences across all classes to provide an overall measure of genetic distinctiveness of a particular
assignment of samples to the classes (see Supplemental Methods for details). The single move that makes the biggest improvement in
this genetic distinctiveness metric is chosen, and this process is iterated to the point at which no movement improves the metric. B.
Genetic alterations that distinguish the DLBCL genetic subtypes. For each subtype, the constellation of genetic aberrations that best
distinguishes subtype cases from all other DLBCLs is shown, together a log;o P-value from a Fisher’s exact test for this distinction.
Shown are aberrations in subtype distinction genes with >10% prevalence within the subtype (>20% for N1 genes) and P<0.001 for
the distinction of the subtype from all other cases (P<0.01 for N1). Asterisks indicate genes that are predicted to be targets of aberrant
somatic hypermutation mediated by AID (see Supplemental Methods). () genes for which subclonal mutations were included.

(#) P-value refers to MCD vs. other cases. Putative assignment as an oncogene (Onc), tumor suppressor (TS) or target of aberrant
somatic hypermutation (SHM) is shown. Mut: mutation; Amp: amplification; Gain: single copy gain; HL: heterozygous loss; HD:
homozygous deletion; Fus: gene fusion; Transloc: translocation.
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Figure S3
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Figure S3. Gene expression signatures that distinguish the DLBCL genetic subtypes.

Each row represents the signature average value (see Supplemental Methods) for each patient in the indicated DLBCL
genetic subtypes, according to the color scale shown. The signatures were selected from the SignatureDB database*
and were significantly differential between the genetic subtype (P<0.05, F-test). Signature averages with correlated
values across DLBCL cases are grouped together, revealing biological distinctions between the genetic subtypes. A full
annotation of these signatures is available at https://lymphochip.nih.gov/signaturedb/. Asterisks indicate signatures
presented in Figure 3. Briefly, their annotations are: IRF4Up-7: direct IRF4-activated genes that are highly expressed in
ABC DLBCL; IRF4Dn-1: Direct IRF-repressed genes that are expressed at low levels in ABC DLBCL; BCL6Dn-1:
genes that are downregulated by BCL6; TCF3Up-1: genes that are upregulated by TCF3 in Burkitt lymphoma; PC-1:
genes more highly expressed in normal bone marrow-derived plasma cells than in mature B cells; Notch1Up-6: Direct
NOTCH1-transactivated genes in chronic lymphocytic leukemia; NFkB-10: genes upregulated by IxB kinase-induced
NF-kB activity in ABC DLBCL; MycUp-2: genes upregulated by Myc overexpression; Prolif-10: cell cycle-regulated
genes that are upregulated in proliferating cells; Quiesce-2: genes upregulated in non-proliferating, quiescent cells;
CDA4T-2: genes characteristically expressed in naive CD4 T cells; Myeloid-1: genes characteristically in normal myeloid
blood subpopulations; FDC-1: genes characteristically expressed in normal follicular dendritic cells; Stromal-1: genes
expressed in DLBCL tumors with a high content of mesenchymal cells and extracellular matrix, which is associated
with favorable survival in response to R-CHOP chemotherapy.’
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Figure S4
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Figure S4. Mutations shared by primary central nervous system lymphoma (PCNSL) and DLBCL genetic subtypes.
PCNSL mutational data was curated from 4 whole exome sequencing studies of PCNSL biopsies from 47 donors.!-#
Shown are genes present in >10% of PCNSL tumors that are characteristically altered in MCD DLBCL.
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Figure S5
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Figure S5. Genetic aberrations in oncogenic regulatory pathways. A. Presence of genetic abnormalities in the indicated
oncogenic signaling pathways. For each gene, the genetic aberrations that are displayed is give along with the percentage of
cases with these aberrations. Cases lacking these aberrations are not shown. Assignment to the gene expression subgroups
and genetic subtypes is shown. Mut: mutation; Trunc: truncating mutation; HL: heterozygous loss; HD: homozygous
deletion; Amp: amplification; Transloc: translocation. TSubclonal mutations included. B. Prevalence of genetic aberrations
targeting oncogenic signaling pathways in the DLBCL genetic subtypes. The genetic aberrations included in each of the
indicated oncogenic signaling pathways are those shown in Fig. S5A ****P<(0.0001; ***P<(0.001. C. Relative digital gene
expression for BCL2 in the indicated DLBCL subsets. Error bars: SEM.
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Figure S6
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Figure S6. Comparison of Affymetrix U133+ based predictor score to RNAseq based DGE

predictor score
381 samples with matched U133+ and RNAseq data were available. Vertical and horizontal lines

represent cut-points between class calls.
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Figure S7
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Figure S7. MvsN plot of CGH segmentation for a typical sample.

Each dot represents a segment. X-axis indicates the average signal value for probes in segment, the Y-
axis represents the number of probes available in segment.
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Figure S8
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Figure S8. Relationship between signal values of single copy gains and single copy losses

Each dot represents a sample for which there were at least 10,000 probes that were identified as being
associated with segments representing single copy losses and at least 10,000 probes representing single
copy gains according to their MvsN plot. The Y-axis represents the average signal of the single copy
gains. The X-axis represents the average signal of the single copy losses. The blue line represents the
theoretical value for a model based on Log,. The red line represents the theoretical value for a sample for
a model based on Logs.
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Figure S9
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Figure S9. ROC and PPV-sensitivity curves of the RF model in cross-validation tests

The ROC (left) and PPV-sensitivity curve (right) of the RF model in 23-fold cross-validation tests with
all 44 available features (solid curve) as well as performance of individual toxicity assessors (dotted
curves).
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Figure S10
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Figure S10. ROC and PPV-sensitivity curves of the RF model on holdout samples
ROC (left) and PPV-sensitivity curve (right) of the RF model on the 23 holdout TCGA DLBCL samples
(solid curve). The dotted curves present the ROCs of the toxicity assessors on the same data.
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Figure S11
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Figure S11. Dimensionality-reduction plots of published and predicted somatic hypermutation
genes.

Dimensionality-reduction plots of previously published (left) as well as predicted (right) somatic
hypermutation genes. Red dots indicate hypermutations from 32 genes predicted by Khodabakhshi et
al.>; orange dots are hypermutations in 12 canonical AID target genes; dark blue dots are hypermutations
predicted by our models; light blue dots are pseudo-negatives. Dimensionality reduction methods are
labeled on their respective plots. None of the pseudo-negative genes landed on the t-SNE “island” that
occupies most of the hypermutations.
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Figure S12: Overlap between predicted membership of the four genomic DLBCL subtypes
Venn diagrams depicting overlap between predicted membership of the four genomic DLBCL subtypes,
as predicted by two different algorithms, the random forest and iterative predictor.
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Supplemental Tables

Table S1: Mutation frequency of genes mutated in DLBCL subtypes (Included in a separate Excel file)
Excel spreadsheet showing percentage of DLBCL with mutations (> 10% allele frequency) in 13,743
genes. DLBCL were sub-grouped by gene expression in ABC, Unclassified, and GCB or by genetic sub-
setting in MCB, BN2, N1, EZB, and Other (i.e. genetically unclassifiable). Other ABC, other GCB, and other
Unclassified denotes mutation frequency of genetically unclassifiable cases within the gene expression
subgroups. Total indicates mutation frequency in all DLBCL. Cases were counted maximally once per
gene.

Table S2: Mutation frequency of genes including subclonal mutations in DLBCL subtypes (Included in a
separate Excel file)

Excel spreadsheet showing percentage of DLBCL with mutations and subclonal mutations (> 2% allele
frequency) in 13,743 genes. DLBCL were grouped as described for Table S1.

Table S3: Frequency of chromosomal amplifications of genes in DLBCL subtypes (Included in a
separate Excel file)

Excel spreadsheet showing percentage of DLBCL with chromosomal amplifications (i.e. copy numbers of
4 and above) in 18,130 genes. DLBCL were grouped as described for Table S1.

Table S4: Frequency of chromosomal gains of genes in DLBCL subtypes (Included in a separate Excel
file)

Excel spreadsheet showing percentage of DLBCL with single copy gains (copy number of 3) in 21,301
genes. DLBCL were grouped as described for Table S1.

Table S5: Frequency of heterozygous losses of genes in DLBCL subtypes (Included in a separate Excel
file)

Excel spreadsheet showing percentage of DLBCL with loss of one allele in 21,124 genes. DLBCL were
grouped as described for Table S1.

Table S6: Frequency of homozygous losses of genes in DLBCL subtypes (Included in a separate Excel
file)

Excel spreadsheet showing percentage of DLBCL with loss of both alleles in 13,343 genes. DLBCL were
grouped as described for Table S1.

Table S7: Frequency of individual mutations in DLBCL subtypes (Included in a separate Excel file)
Excel spreadsheet showing mutation frequency of 54,182 individual mutations in DLBCL subgroups.
Mutation type indicates predicted mutation categories (missense, truncating (TRUNC), or in-frame
deletions/insertions (INFRAME). Study specific Mutation IDs were assigned to individual mutations.
DLBCL were grouped as described for Table S1.

Table S8: Frequency of individual subclonal mutations in DLBCL subtypes (Included in a separate Excel
file)

Excel spreadsheet showing mutation frequency of 1314 subclonal (> 2% allele frequency) individual
mutations in DLBCL subgroups. DLBCL were grouped as described for Table S1.
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Table S9: Characteristics of DLBCL patients (Included in a separate Excel file)

Excel spreadsheet showing the patient characteristics of DLBCL included in the study. NA: not available
IPI range groups: 0-1 (low); 2-3 (intermediate); 4-5 (high). If some IPI components are missing and the
range of the IPl would fall between these groups, this parameter is left blank and the case was not used
for the IPI analysis. Chemoimmunotherapy includes CHOP or CHOP-like chemotherapy plus Rituximab.

Table S10: Statistical analysis addition DLBCL subtype distinction to International Prognostic Index
(IP1) model (Included in a separate Excel file)

Excel spreadsheet showing results of statistical analysis adding genetic subtype distinction to the IPI
groups. IPl score was treated as a categorical variable taking on three values: Low for IPI=(0,1),
Intermediate for IPI = (2,3), High for IPI =(4,5).

Table S11: HaloPlex Design (Included in a separate Excel file)

Excel spreadsheet showing HaloPlex Design for deep amplicon sequencing. Features of Haloplex design
were as follows: H. sapiens, hg19, GRCh37, 602 targets comprising 5643 regions, region size: 2.549 Mbp,
137864 total amplicons, total target bases analyzable: 2.48 Mbp, total sequence design: 4.10 Mbp,
target coverage: 97.25 %, databases: RefSeq, Gencode, regions including coding exons, 5' UTR, and 3'
UTR, region extension: 50 bases from 3' end and 50 bases from 5' end. (TargetID: Gene symbol or
chromosomal region. Interval: The genomic interval of the target. Regions: The number of regions within
this target. Size: The total size (in base pairs) of the regions. Database(s): The databases in which this
target was found. High Coverage: Number of regions where analyzable amplicon overlap >= 90%. Low
Coverage: Number of regions where analyzable amplicon overlap < 90%).

Table S12: Prediction values aberrant somatic hypermutation in DLBCL (Included in a separate Excel
file)

Excel spreadsheet showing probability scores from support vector machine (SVM) and random forest
(RF) models predicting aberrant somatic hypermutations (aSHM). Only those genes with at least 40
mutations across all ExonSeq sample are listed in this worksheet. Genes are ranked by decreasing SVM
score. Training genes are listed without a score (N/A). Previously defined aSHM genes were used as
training positives; genes that were not previously defined as targets of aSHM used in training were
pseudo-negatives. Probability scores highlighted in yellow predicting aSHM. Only genes with > 30
mutations are shown.

Table S13: Genetic features included in subtype predictors (Included in a separate Excel file)

Excel spreadsheet listing the genetic aberrations that were included in two genetic classification
methods. One method utilizes translocations of BCL2 and BCL6, mutations, amplifications and
homozygous deletions. The second utilizes only translocations of BCL2 and BCL6, and mutations.
Feature descriptions are presented above in the “Genomic feature definition” section (p. 19). Genomic
coordinates according to hgl9.
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Table S14. Summary characteristics of the samples used for predictive model for somatic mutations in

DLBCL

Characteristics of the 46 DLBCL TCGA samples used in the training/holdout test as well as the 23 samples
used in the cross-validation tests.

Characteristic

Cross-validation data  All DLBCL data

# somatic calls (MuTect2)

# germline calls (MuTect2)

Mean reference depth

Std. dev., reference depth

Duplicates across samples

2263 (78%)

650 (22%)

124.8

117.3

451

Unique calls containing duplicates 147

Total unique calls

# samples

2609

23

5156 (82%)
1146 (18%)
118.6
109.6

888

236

5650

46

Table S15. List of annotation features used to create a Random Forest model of somatic mutations in

DLBCL.

1 SIFT_score
2 SIFT_pred

3 Polyphen2_HDIV_score
4 Polyphen2_ HDIV_ pred

5 Polyphen2 HVAR score
6 Polyphen2 HVAR pred

7 LRT score
8 LRT_pred

9 MutationTaster_score

10 MutationTaster_pred
11 MutationAssessor_score
12 MutationAssessor_pred
13 FATHMM _score
14 FATHMM _pred
15 RadialSVM _score

16 RadialSVM_pred

17 LR_score

18 LR_pred

19 VEST3_score

20 CADD_raw

21 CADD_phred

22 GERP++_RS

23 phyloP46way_placental
24 phyloP100way_vertebrate
25 SiPhy_29way_logOdds

Table S16. Performance of the leave-one out cross validation samples used in training the RF model
Classification performance of the 23-fold, leave-one (sample) out cross validation on the 23 samples
used in training the RF model.

MuTect2 call
Somatic Germline
RF model prediction Somatic 1957 134
Germline 306 516
AUC Accuracy Sensitivity Specificity PPV F1-score
0.90 0.85 0.87 0.79 0.94 0.90
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Table S17. Holdout testing performance of the RF model on 23 TCGA DLBCL samples not used in
training.

MuTect2 call
Somatic Germline
Somatic 2751 96
RF Prediction
Germline 142 400
AUC Accuracy Sensitivity Specificity Pos. Pred. Val.  Fl-score
0.93 0.93 0.95 0.81 0.97 0.96

Table S18. Application of the RF model to predict somatic variants on the full set of filtered DLBCL
variants used in the current study
(A) — Prediction on all variants; (B) — prediction on those donor samples downloaded from TCGA.

(A) RF prediction, all missense variants

DLBCL subtype Somatic Germline % Somatic
ABC 1291 16869 93

GCB 381 9135 96
Unclassified 592 7122 92

Overall 2264 33126 94

(B) RF prediction, TCGA missense variants

DLBCL subtype Somatic Germline % Somatic
ABC 49 643 93

GCB 69 1296 95
Unclassified 23 306 93

Overall 141 2245 94
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Table $S19. Leave-one-out cross validation results of models for predicting somatic hypermutations

Model Accuracy PPV Sensitivity Specificity F1
RF 0.89 0.96 0.81 0.97 0.88
SVM 0.83 0.92 0.72 0.94 0.81

Table $20. Known (shaded and in italic) and predicted hypermutation genes in DLBCL.

BACH2
BCL2
BCL6
BCL7A
BTG1
BTG2
CD74
CD83
CIITA
CXCR4
DMD
DTX1
DUSP2
ETS1
GADD45B
GRHPR
HISTIH2AC
IRF4

IRF8
LRMP

LTB

myc
NCOA3
P2RY8
PAX5
PIM1
POU2AF1
SGK1
SOCS1
TCL1A
TMSB4X
ZFP36L1
RHOH
BIRC3
SERPINA9
MS4A1
S1PR2
ST6GAL1
SPRED2
UBE2J1

ACTB
ACTG1
ARID5B
ATXN2
Clorfl167
CD44
CDKN1B
DTX4
EGR1
EHD1
EIF4A2
ETV6
FAM102A
FCRL3
FOXC1
FOXO1
H2AF)
HIST1H1B
HIST1H1C
HIST1H1E

HIST1H2AB
HIST1H2AD
HIST1H2AE
HIST1IH2AG
HIST1H2AH
HIST1H2AI
HIST1H2AL
HISTIH2AM
HIST1H2BC
HIST1H2BD
HIST1H2BF
HIST1H2BG
HIST1H2BJ
HIST1H2BK
HIST1H2BL
HIST1H2BO
HIST1H3B
HIST1H3D
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HIST1H3H
HIST2H2AA4
HIST2H2AB
HIST2H2AC
HIST2H2BE
HIST2H2BF
HIST2H3A
HIST2H3C
HIST2H3D
HIST4H4
HLA-B

ID3
IGLL5-RSPH14
IL10RA

IL16
IRF2BP2
ITPKB

KLF2

KLHL14

KLHL21 TAS1R1
LIMD2 TNF

LST1 TNFRSF14
LTA UBE3C
MAP3K3 VMP1
MCL1 WEE1
MPEG1 ZFP36L2
NOL9 ZNF608
OSBPL10 ZNF804A
PIM2 ZNF860
PPP1R9B

PRAMEF25

PRAMEF26

PRAMEF7

PRAMEF8

PRRT2

RCC1

RFTN1

RNF144B
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